17. Which of the following is a homogeneous differential equation?

(A)
$$(4x + 6y + 5) dy - (3y + 2x + 4) dx = 0$$

(B)
$$(xy) dx - (x^3 + y^3) dy = 0$$

(C)
$$(x^3 + 2y^2) dx + 2xy dy = 0$$

(D)
$$y^2 dx + (x^2 - xy - y^2) dy = 0$$

9.5.3 Linear differential equations

A differential equation of the from

$$\frac{dy}{dx} + Py = Q$$

where, P and Q are constants or functions of x only, is known as a first order linear differential equation. Some examples of the first order linear differential equation are

$$\frac{dy}{dx} + y = \sin x$$

$$\frac{dy}{dx} + \left(\frac{1}{x}\right)y = e^x$$

$$\frac{dy}{dx} + \left(\frac{y}{x \log x}\right) = \frac{1}{x}$$

Another form of first order linear differential equation is

$$\frac{dx}{dy} + P_1 x = Q_1$$

where, P_1 and Q_1 are constants or functions of y only. Some examples of this type of differential equation are

$$\frac{dx}{dy} + x = \cos y$$
$$\frac{dx}{dy} + \frac{-2x}{y} = y^2 e^{-y}$$

To solve the first order linear differential equation of the type

$$\frac{dy}{dx} + Py = Q \qquad \dots (1)$$

Multiply both sides of the equation by a function of x say g(x) to get

$$g(x) \frac{dy}{dx} + P.(g(x)) y = Q.g(x)$$
 ... (2)

408 MATHEMATICS

Choose g(x) in such a way that R.H.S. becomes a derivative of $y \cdot g(x)$.

i.e.
$$g(x) \frac{dy}{dx} + P. g(x) y = \frac{d}{dx} [y.g(x)]$$
or
$$g(x) \frac{dy}{dx} + P. g(x) y = g(x) \frac{dy}{dx} + y g'(x)$$

$$\Rightarrow P. g(x) = g'(x)$$
or
$$P = \frac{g'(x)}{g(x)}$$

Integrating both sides with respect to x, we get

or
$$\int P dx = \int \frac{g'(x)}{g(x)} dx$$
or
$$\int P \cdot dx = \log(g(x))$$
or
$$g(x) = e^{\int P dx}$$

On multiplying the equation (1) by $g(x) = e^{\int P dx}$, the L.H.S. becomes the derivative of some function of x and y. This function $g(x) = e^{\int P dx}$ is called *Integrating Factor* (I.F.) of the given differential equation.

Substituting the value of g(x) in equation (2), we get

$$e^{\int P dx} \frac{dy}{dx} + P e^{\int P dx} y = Q \cdot e^{\int P dx}$$
$$\frac{d}{dx} \left(y e^{\int P dx} \right) = Q e^{\int P dx}$$

or

Integrating both sides with respect to x, we get

$$y \cdot e^{\int P dx} = \int \left(Q e^{\int P dx} \right) dx$$
$$y = e^{-\int P dx} \cdot \int \left(Q \cdot e^{\int P dx} \right) dx + C$$

or

which is the general solution of the differential equation.

Steps involved to solve first order linear differential equation:

- (i) Write the given differential equation in the form $\frac{dy}{dx} + Py = Q$ where P, Q are constants or functions of x only.
- (ii) Find the Integrating Factor (I.F) = $e^{\int P dx}$.
- (iii) Write the solution of the given differential equation as

$$y (I.F) = \int (Q \times I.F) dx + C$$

In case, the first order linear differential equation is in the form $\frac{dx}{dy} + P_1x = Q_1$,

where, P_1 and Q_1 are constants or functions of y only. Then I.F = $e^{P_1 dy}$ and the solution of the differential equation is given by

$$x \cdot (I.F) = \int (Q_1 \times I.F) dy + C$$

Example 19 Find the general solution of the differential equation $\frac{dy}{dx} - y = \cos x$.

Solution Given differential equation is of the form

$$\frac{dy}{dx}$$
 + Py = Q, where P = -1 and Q = $\cos x$

Therefore

$$I.F = e^{\int -1 dx} = e^{-x}$$

Multiplying both sides of equation by I.F, we get

$$e^{-x}\frac{dy}{dx} - e^{-x}y = e^{-x}\cos x$$

or

$$\frac{dy}{dx}(ye^{-x}) = e^{-x}\cos x$$

On integrating both sides with respect to x, we get

$$ye^{-x} = \int e^{-x} \cos x \, dx + C \qquad \dots (1)$$

$$I = \int e^{-x} \cos x \, dx$$

$$= \cos x \left(\frac{e^{-x}}{-1}\right) - \int (-\sin x) \left(-e^{-x}\right) \, dx$$

Let